Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plant Mol Biol ; 114(3): 45, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38630407

RESUMO

The recent growth in global warming, soil contamination, and climate instability have widely disturbed ecosystems, and will have a significant negative impact on the growth of plants that produce grains, fruits and woody biomass. To conquer this difficult situation, we need to understand the molecular bias of plant environmental responses and promote development of new technologies for sustainable maintenance of crop production. Accumulated molecular biological data have highlighted the importance of RNA-based mechanisms for plant stress responses. Here, we report the most advanced plant RNA research presented in the 33rd International Conference on Arabidopsis Research (ICAR2023), held as a hybrid event on June 5-9, 2023 in Chiba, Japan, and focused on "Arabidopsis for Sustainable Development Goals". Six workshops/concurrent sessions in ICAR2023 targeted plant RNA biology, and many RNA-related topics could be found in other sessions. In this meeting report, we focus on the workshops/concurrent sessions targeting RNA biology, to share what is happening now at the forefront of plant RNA research.


Assuntos
Arabidopsis , RNA de Plantas/genética , Arabidopsis/genética , Ecossistema , Agricultura , Solo
2.
Genome Res ; 34(2): 272-285, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38479836

RESUMO

mRNA translation relies on identifying translation initiation sites (TISs) in mRNAs. Alternative TISs are prevalent across plant transcriptomes, but the mechanisms for their recognition are unclear. Using ribosome profiling and machine learning, we developed models for predicting alternative TISs in the tomato (Solanum lycopersicum). Distinct feature sets were predictive of AUG and nonAUG TISs in 5' untranslated regions and coding sequences, including a novel CU-rich sequence that promoted plant TIS activity, a translational enhancer found across dicots and monocots, and humans and viruses. Our results elucidate the mechanistic and evolutionary basis of TIS recognition, whereby cis-regulatory RNA signatures affect start site selection. The TIS prediction model provides global estimates of TISs to discover neglected protein-coding genes across plant genomes. The prevalence of cis-regulatory signatures across plant species, humans, and viruses suggests their broad and critical roles in reprogramming the translational landscape.


Assuntos
Eucariotos , Iniciação Traducional da Cadeia Peptídica , Humanos , Iniciação Traducional da Cadeia Peptídica/genética , Eucariotos/genética , Plantas/genética , Regiões 5' não Traduzidas , RNA Mensageiro/genética , Códon de Iniciação
3.
Plant Sci ; 335: 111822, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37574140

RESUMO

In plants and other eukaryotes, precise selection of translation initiation site (TIS) on mRNAs shapes the proteome in response to cellular events or environmental cues. The canonical translation of mRNAs initiates at a 5' proximal AUG codon in a favorable context. However, the coding and non-coding regions of plant genomes contain numerous unannotated alternative AUG and non-AUG TISs. Determining how and why these unexpected and prevalent TISs are activated in plants has emerged as an exciting research area. In this review, we focus on the selection of plant TISs and highlight studies that revealed previously unannotated TISs used in vivo via comparative genomics and genome-wide profiling of ribosome positioning and protein N-terminal ends. The biological signatures of non-AUG TIS-initiated open reading frames (ORFs) in plants are also discussed. We describe what is understood about cis-regulatory RNA elements and trans-acting eukaryotic initiation factors (eIFs) in the site selection for translation initiation by featuring the findings in plants along with supporting findings in non-plant species. The prevalent, unannotated TISs provide a hidden reservoir of ORFs that likely help reshape plant proteomes in response to developmental or environmental cues. These findings underscore the importance of understanding the mechanistic basis of TIS selection to functionally annotate plant genomes, especially for crops with large genomes.


Assuntos
Iniciação Traducional da Cadeia Peptídica , Ribossomos , Códon de Iniciação/genética , Códon de Iniciação/metabolismo , Iniciação Traducional da Cadeia Peptídica/genética , Ribossomos/genética , Ribossomos/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Biossíntese de Proteínas , Fases de Leitura Aberta/genética
4.
Plant Mol Biol ; 105(1-2): 177-192, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33025522

RESUMO

KEY MESSAGE: Rice is an important crop in the world. However, little is known about rice mRNA deadenylation, which is an important regulation step of gene expression at the post-transcriptional level. The CCR4-NOT1 complex contains two key components, CCR4 and CAF1, which are the main cytoplasmic deadenylases in eukaryotic cells. Expression of OsCAF1B was tightly coupled with low-temperature exposure. In the present study, we investigated the function of OsCAF1B in rice by characterizing the molecular and physiological responses to cold stress in OsCAF1B overexpression lines and dominant-negative mutant lines. Our results demonstrate that OsCAF1B plays an important role in growth and development of rice seedlings at low temperatures. Rice is a tropical and subtropical crop that is sensitive to low temperature, and activates a complex gene regulatory network in response to cold stress. Poly(A) tail shortening, also termed deadenylation, is the rate-limiting step of mRNA degradation in eukaryotic cells. CCR4-associated factor 1 (CAF1) proteins are important enzymes for catalysis of mRNA deadenylation in eukaryotes. In the present study, the role of a rice cold-induced CAF1, OsCAF1B, in adaptation of rice plants to low-temperature stress was investigated. Expression of OsCAF1B was closely linked with low-temperature exposure. The increased survival percentage and reduced electrolyte leakage exhibited by OsCAF1B overexpression transgenic lines subjected to cold stress indicate that OsCAF1B plays a positive role in rice growth under low ambient temperature. The enhancement of cold tolerance by OsCAF1B in transgenic rice seedlings involved OsCAF1B deadenylase gene expression, and was associated with elevated expression of late-response cold-related transcription factor genes. In addition, the expression level of OsCAF1B was higher in a cold-tolerant japonica rice cultivar than in a cold-sensitive indica rice cultivar. The results reveal a hitherto undiscovered function of OsCAF1B deadenylase gene expression, which is required for adaptation to cold stress in rice.


Assuntos
Resposta ao Choque Frio/fisiologia , Oryza/metabolismo , Proteínas de Plantas/metabolismo , Plântula/metabolismo , Temperatura Baixa , Resposta ao Choque Frio/genética , Regulação da Expressão Gênica de Plantas , Peróxido de Hidrogênio , Peroxidação de Lipídeos , Oryza/genética , Fenótipo , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas , Fatores de Processamento de RNA/genética , Fatores de Processamento de RNA/metabolismo , Estabilidade de RNA , Plântula/genética , Temperatura , Transcriptoma
5.
Plant Cell Physiol ; 61(3): 554-564, 2020 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-31782784

RESUMO

Poly(A) tail (PAT) shortening, also termed deadenylation, is the rate-limiting step of mRNA degradation in eukaryotic cells. The carbon catabolite repressor 4-associated factor 1s (CAF1s) were shown to be one of the major enzymes for catalyzing mRNA deadenylation in yeast and mammalian cells. However, the functions of CAF1 proteins in plants are poorly understood. Herein, a sugar-upregulated CAF1 gene, OsCAF1B, is investigated in rice. Using gain-of-function and dominant-negative mutation analysis, we show that overexpression of OsCAF1B resulted in an accelerated α-amylase gene (αAmy3) mRNA degradation phenomenon, while ectopic expression of a form of OsCAF1B that had lost its deadenylase activity resulted in a delayed αAmy3 mRNA degradation phenomenon in transgenic rice cells. The change in αAmy3 mRNA degradation in transgenic rice is associated with the altered lengths of the αAmy3 mRNA PAT, indicating that OsCAF1B acts as a negative regulator of αAmy3 mRNA stability in rice. Additionally, we found that overexpression of OsCAF1B retards seed germination and seedling growth. These findings indicate that OsCAF1B participates in sugar-induced αAmy3 mRNA degradation and deadenylation and acts a negative factor for germination and seedling development.


Assuntos
Germinação/fisiologia , Oryza/metabolismo , Proteínas de Plantas/metabolismo , RNA Mensageiro/metabolismo , Plântula/crescimento & desenvolvimento , Exorribonucleases/metabolismo , Regulação da Expressão Gênica de Plantas , Germinação/genética , Oryza/enzimologia , Oryza/genética , Proteínas de Plantas/genética , Fatores de Processamento de RNA/metabolismo , Estabilidade de RNA , RNA Mensageiro/genética , Plântula/genética , Sementes/crescimento & desenvolvimento , Sementes/metabolismo , Açúcares , Transcriptoma , alfa-Amilases/genética , alfa-Amilases/metabolismo
6.
Plant Mol Biol ; 93(1-2): 79-96, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27714489

RESUMO

KEY MESSAGE: Rice is an important crop in the world. However, little is known about rice mRNA deadenylation, which is an important regulation step of gene expression at the post-transcriptional level. The CCR4-NOT1 complex contains two key components, CCR4 and CAF1, which are the main cytoplasmic deadenylases in eukaryotic cells. In yeast and humans, CCR4 can interact with CAF1 via its N-terminal LRR domain. However, no CCR4 protein containing N-terminal LRR motifs have been found in plants. In this manuscript, we demonstrate a novel pattern of interaction between OsCCR4 and OsCAF1 in the rice CCR4-NOT complex, and that OsCAF1 acts as a bridge between OsCCR4 and OsNOT1 in this complex. Our results revealed that the Mynd-like domain at the N-terminus of rice CCR4 proteins and the PXLXP motif at the rice CAF1 N-terminus play critical roles in OsCCR4-OsCAF1 interaction. Deadenylation, also called poly(A) tail shortening, is the first rate-limiting step in general cytoplasmic mRNA degradation in eukaryotic cells. Carbon catabolite repressor (CCR)4 and CCR4-associated factor (CAF)1 in the CCR4-NOT complex function in mRNA poly(A) tail shortening. CCR4s contain N-terminal leucine-rich repeat (LRR) motifs that interact with CAF1s in yeast, fruit fly and mammals. In silico analysis has not identified any plant CCR4 proteins that contain LRR motifs. Here, two rice CCR4 homologous genes, OsCCR4a and OsCCR4b, were identified. The isolated recombinant exonuclease-endonuclease-phosphatase domain of OsCCR4a and OsCCR4b exhibited 3'-5' exonuclease activity in vitro, and point mutation of a catalytic residue in this domain disrupted the deadenylase activity. Both OsCCR4a and OsCCR4b fluorescent fusion proteins were localized in the rice cytoplasm and nucleus, and both associated with processing bodies via their N-terminus. Binding analyses showed that OsCCR4a and OsCCR4b directly interacted with three rice CAF1 family members: OsCAF1A, OsCAF1G and OsCAF1H. The zf-MYND-like domain at the N terminus of rice CCR4 and the PXLXP motif of rice CAF1 play critical roles in OsCCR4-OsCAF1 interaction. OsCAF1 proteins, but not OsCCR4 proteins, can interact with the MIG4G domain of rice OsNOT1. Our studies thus reveal a hitherto undiscovered novel interaction pattern that connects OsCCR4 and OsCAF1 in the rice CCR4-NOT complex.


Assuntos
Exorribonucleases/química , Oryza/genética , Proteínas de Plantas/química , Domínios e Motivos de Interação entre Proteínas , Processamento Pós-Transcricional do RNA , Exorribonucleases/genética , Exorribonucleases/metabolismo , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Alinhamento de Sequência , Análise de Sequência de Proteína , Técnicas do Sistema de Duplo-Híbrido , beta-Galactosidase/análise
7.
Plant Mol Biol ; 85(4-5): 443-58, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24805883

RESUMO

Deadenylation, also called poly(A) tail shortening, is the first, rate-limiting step in the general cytoplasmic mRNA degradation in eukaryotic cells. The CCR4-NOT complex, containing the two key components carbon catabolite repressor 4 (CCR4) and CCR4-associated factor 1 (CAF1), is a major player in deadenylation. CAF1 belongs to the RNase D group in the DEDD superfamily, and is a protein conserved through evolution from yeast to humans and plants. Every higher plant, including Arabidopsis and rice, contains a CAF1 multigene family. In this study, we identified and cloned four OsCAF1 genes (OsCAF1A, OsCAF1B, OsCAF1G, and OsCAF1H) from rice. Four recombinant OsCAF1 proteins, rOsCAF1A, rOsCAF1B, rOsCAF1G, and rOsCAF1H, all exhibited 3'-5' exonuclease activity in vitro. Point mutations in the catalytic residues of each analyzed recombinant OsCAF1 proteins were shown to disrupt deadenylase activity. OsCAF1A and OsCAF1G mRNA were found to be abundant in the leaves of mature plants. Two types of OsCAF1B mRNA transcript were detected in an inverse expression pattern in various tissues. OsCAF1B was transient, induced by drought, cold, abscisic acid, and wounding treatments. OsCAF1H mRNA was not detected either under normal conditions or during most stress treatments, but only accumulated during heat stress. Four OsCAF1-reporter fusion proteins were localized in both the cytoplasm and nucleus. In addition, when green fluorescent protein fused with OsCAF1B, OsCAF1G, and OsCAF1H, respectively, fluorescent spots were observed in the nucleolus. OsCAF1B fluorescent fusion proteins were located in discrete cytoplasmic foci and fibers. We present evidences that OsCAF1B colocalizes with AtXRN4, a processing body marker, and AtKSS12, a microtubules maker, indicating that OsCAF1B is a component of the plant P-body and associate with microtubules. Our findings provide biochemical evidence that OsCAF1 proteins may be involved in the deadenylation in rice. The unique expression patterns of each OsCAF1 were observed in various tissues when undergoing abiotic stress treatments, implying that each CAF1 gene in rice plays a specific role in the development and stress response of a plant.


Assuntos
Regulação Enzimológica da Expressão Gênica/fisiologia , Regulação da Expressão Gênica de Plantas/fisiologia , Variação Genética , Oryza/enzimologia , Proteínas de Plantas/metabolismo , Sequência de Aminoácidos , Biomarcadores , Dados de Sequência Molecular , Família Multigênica , Oryza/genética , Filogenia , Proteínas de Plantas/química , Proteínas de Plantas/genética , Transporte Proteico/fisiologia , RNA Mensageiro/metabolismo , Estresse Fisiológico , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Tubulina (Proteína)
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...